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Abstract 

Zonal diffraction amplitudes and crystallographic 
phases, derived from an averaged electron micrograph 
of two-dimensionally crystalline E. coli Omp F outer 
membrane porin (plane group p31m, a = 7 2 A ) ,  
embedded in glucose, were used as a model data set 
to test the feasibility of direct phase extension and ab 
initio direct phase determination. If 17 phase terms 
derived from e.g. a 10A (diffraction) resolution image 
are expanded to 6 ,h, by the Sayre-Hughes equation, the 
unknown phases are found with reasonable accuracy 
(mean error 43 ° for 25 reflections). This, however, is 
not the most optimal starting point. As a function of 
initial image resolution, the accuracy of the phase 
extension to 6 A is approximately a parabolic function. 
That is, an optimal basis resolution, found at 11 A (i. e. 
14 defined reflections), produces a least mean error of 
18 ° for 28 new reflections. In addition, ab initio phase 
determination is possible via a multisolution technique, 
using a test for density flatness as a figure of merit. The 
success of the determination, again, is sensitive to the 
size of the starting basis set generated from the 
permuted unknown reflections. If an annealing step is 
used to improve the basis set, the test for flatness will 
identify which reflections should be changed in phase. 
However, this figure of merit is not absolutely reliable 
for finding the exact value of the unknown phases. 

1. Introduction 

Electron crystallographic techniques have been ex- 
tremely important for the elucidation of integral 
biomembrane protein structures. This is because such 
globular macromolecules are often most conveniently 
organized into two-dimensional microcrystalline arrays 
(e.g. in a phospholipid bilayer matrix). Given the 
enhanced scattering cross section of matter for electrons 
(compared to X-rays or neutrons), electron diffraction 
is the only feasible technique for obtaining unit-cell 
dimensions and symmetry information from single 
crystals, as well as well resolved intensities of 
individual reflections. Since electron crystallography 
is also an optical method, electron micrographs have 
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been a major source of crystallographic phases for such 
structure analyses, based on the averaging of crystalline 
lattices by Fourier filtration or cross-correlation 
techniques (Amos, Henderson & Unwin, 1982; 
Henderson, Baldwin, Downing, Lepault & Zemlin, 
1986). [Patterson search techniques, e.g. molecular 
replacement, have been much less frequently exploited 
(Rossman & Henderson, 1982; Earnest, Walian, 
Gehring & Jap, 1992).] Although initial work on 
protein microcrystals was carried out mainly on 
negatively stained preparations, higher-resolution 
information is nowadays obtained from unstained 
preparations, where the aqueous environment is either 
frozen into a vitreous ice or replaced by a non-volatile 
hydrogen-bonding substance, such as a saccharide. 

Although the analysis of low-contrast unstained 
micrographs is important for the visualization of the 
native protein structures, there are challenges to this 
method for obtaining crystallographic phases that 
become more critical as the desired resolution increases 
(Henderson et al., 1986). For example, radiation 
damage, induced by the inelastic interaction of the 
incident beam with the sample, becomes more prob- 
lematic as more and more pixels are needed to resolve a 
structural detail, even though the crystallographic 
repeat allows a somewhat noisy image, collected by 
so-called 'low-dose techniques', to be averaged. The 
actual phase-contrast transfer function of the electron- 
microscope objective lens is also difficult to define 
exactly for a given experimental image, especially at 
higher spatial frequencies, when it is recorded at low 
beam doses, even though approximate methods have 
been found to retrieve it (Unwin & Henderson, 1975; 
Li, 1991). Finally, reconstitution of a membrane 
protein in a lipid matrix often induces a certain amount 
of paracrystalline disorder to the specimen, i.e. the 
space lattice is locally curved. Thus, the electron 
diffraction pattern from a sample may be found to 
extend out to 3 A resolution or better, while the optical 
transform of the recorded micrograph will be observed 
to a lower resolution limit, e.g. from 10 to 6/k 
(Henderson et al., 1986). Is there some way, therefore, 
to use the lower-resolution image information, most 
conveniently obtained from the electron microscope, to 
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extend directly to the resolution limit of the electron 
diffraction pattern? Are there even suitable methods for 
determining crystallographic phases directly for thin 
macromolecular crystals without recourse to electron 
micrographs? 

In response to the first question, Gilmore, Shankland 
& Fryer (1993) pioneered the application of direct 
methods to phase extension for such protein structures. 
In this work, they improved the resolution of 15A 
image-derived phases from bacteriorhodopsin (Hender- 
son et al., 1986) to better than 3 A electron diffraction 
resolution by employing maximum-entropy and like- 
lihood methods. More recently, this laboratory (Dorset, 
Kopp, Fryer & Tivol, 1995) has investigated the utility 
of more simplistic approaches to such phase extension, 
successfully applying the Sayre (1952) equation to data 
sets from bacteriorhodopsin and halorhodopsin 
(Havelka, Henderson, Heymann & Oesterhelt, 1993), 
resI?ectively expanding image-derived phases in 10 and 
15 A resolution basis sets. The prospect for ab initio 
determinations has also been explored (Dorset, 1995) 
successfully with the latter structure, for which the 
projection is centrosymmetric. The phase determination 
employed a multisolution approach, also via the Sayre 
(1952) equation. The optimal structure solution was 
identified by a figure of merit used in early X-ray 
studies of amphiphile mesophases (Luzzati, Tardieu & 
Taupin, 1972), later proposed for macromolecules 
(Luzzati, Mariani & Delacroix, 1988). 

It might be argued from the preliminary work that, 
since the two structures examined both contain a large 
amount of c~-helix (projecting, moreover, down the 
helical axes), a certain amount of 'pseudo-atomicity' 
[i.e. the Fourier transform of a Gaussian 'glob' 
(Harker, 1953)] might presuppose a favorable outcome 
for extensions with the Sayre equation. In this paper, a 
protein with predominately fl-sheet structure is exam- 
ined, i.e. the Omp F porin from the outer membrane of 
E. coli (Sass et al., 1989), to test the generality of 
procedures developed so far. 

2. Materials and methods 

2.1. Experimental data 

Experimental image data (amplitudes and phases in 
the Fourier transform) were obtained from Dr H. J. 
Sass, who supervised the earlier analysis of this 
structure from low-dose high-resolution (3.2 A) electron 
micrographs of the reconstituted protein, embedded in 
glucose. The original data were obtained at 100 kV and 
5 K on the Suleika electron microscope with a liquid- 
helium-cooled superconducting lens at the Fritz Haber 
Institut in Berlin. There were two forms of the protein 
observed in this original work (Sass et al., 1989; Sass, 
1990), one in the single membrane layer with projected 
p3 symmetry and another in an aligned stack of two 

membranes with plane-group symmetry p31m. In both 
cases, the hexagonal unit-cell constant was a = 72 A. 

The data provided by Dr Sass were among the sets 
used for determination of the projected structure by 
image analysis with the computer program package 
IMAGIC (Van Heel & Keegstra, 1981). In order to 
assess the practical resolution limits (Glaeser & Down- 
ing, 1992) that would be suitable for direct phase 
determination/extension, mean structure-factor ampli- 
tudes, found from the image transform and averaged in 
resolution shells, were plotted as a function of median 
reciprocal spacing for each shell (Fig. 1). Although the 
diffraction resolution extends formally to 3.2 A, most of 
the information content is expressed within a 6 A, limit, 
where most of the diffracted energy is found. 

An image was generated at this lower 6 A diffraction 
limit assuming p l  plane-group symmetry. It was then 
re-scanned and analyzed using the image-averaging 
program package CRISP (Hovm6Uer, 1992), which 
permits any possible projectionsymmetry to be assessed 
after a suitable shift is made to an allowable plane-group 
origin. Under these conditions, while the lowest phase 
residual (19.3 °) was found for plane group p3, a nearly 
equivalent value (26.1 ° ) was found for plane group 
p31m, while a significantly poorer residual (43.7 °) was 
detected, for example, when plane-group symmetry 
p3ml was imposed. The potential map for the p31m 
structure (Fig. 2) closely resembled the average image 
obtained for the double membrane stack (Sass et al., 
1989). Thus, the derived phases and amplitudes from 
the structure in plane group p3 lm were used as a model 
set of 42 unique reflections for the phase determinations 
described below. From the structure-factor amplitudes, 
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Fig. 1. Average structure-factor amplitudes IFhl for increasing 
overlapping shells of diffraction resolution centered at d*. Although 
the nominal resolution of the diffraction data (image transform) is 
found to be near 3.2 ,h,, most of the structural detail can be observed 
at 6/k, coincident with the most intense part of the transform. 
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normalized values were calculated in the way usually 
carried out for protein data (Blundell & Johnson, 1976), 
i.e. IEhl = IFul/[F~h] 1/2. An approximate value for 
Eooo = N ~/2 was found from the molecular weight of 
the porin monomer (Rosenbusch, 1974), i.e. 36500 
daltons, multiplied by 3, assuming that the average 
heavy atom is carbon. As shown earlier (Dorset, Kopp, 
Fryer & Tivol, 1995), this value need not be extremely 
accurate and is used only to stabilize the basis-phase-set 
values used in the Sayre equation. [If it is omitted, the 
phase values in the basis set are rapidly changed by the 
convolution since the condition of positivity must be 
imposed (Sayre, 1952).] Among the factors that would 
contribute to the inaccuracy of the E000 estimate are the 
limited resolution of the data set and the presence of 
only zonal data (hence an inaccurate scaling of the 
normalized structure factors), as well as the non- 
inclusion of solvent (or lipid) molecular scattering 
contributions. 

2.2. Phase determination 

In initial tests, it was assumed that an electron 
micrograph, obtained at a specified diffraction resolu- 
tion, could be averaged to yield a set of useful 
crystallegraphic phases that could be used as a basis 
for resolution enhancement. The phases were then 
extended by means of the Sayre-Hughes equation 
(Hughes, 1953; Sayre, 1980): Eh = N1/2(EkEh_k)k. A 
mean phase error (Iz~01) = ([tPSayre --~0imagel) was then 
calculated, to evaluate the fit of the overall phase set as 
well as the newly found terms from the Sayre expansion 
to the original phases derived from the electron 
micrograph. (Thus, ~0imag e denotes the phase of any 
reflection obtained from the Fourier transform of the 
averaged highest-resolution micrograph after translation 
to an allowed unit-cell origin.) 

t "-t  ; 

For ab initio phase determinations, a basis resolution, 
equivalent to the limit used for two of the modeled 
image-derived phase sets, was defined. Reflections with 
suitably high IEhl values within this low-resolution set 
were then assigned symbolic values. Permutation of 
algebraic unknowns was required for the plane group 
since all hk0 reflections are seminvariants (Rogers, 
1980), allowing no origin-defining values to be specified 
a priori. If the reflections (i. e. the axial h00 values) had 
centrosymmetric phase values, the symbolic value was 
then permuted through 0,rr. When a general, non- 
centrosymmetric, hk0 term was chosen, it was cycled 
through rr/4 + n(zr/2) around the four quadrants of 
phase space. From the initial phase sets found after this 
generation of multiple trials, expansions were then 
made with the Sayre-Hughes equation to fill in all 
reflections to the resolution limit of the defined basis set. 
[Unlike the previous experience with halorhodopsin 
(Dorset, 1995), all phases were defined after just one 
convolution cycle.] Possible solutions, generated from 
the permuted starting phase terms, were sought in the 
multiple list after calculating all possible potential maps 
and testing the flatness of the density distribution. This 
test was made using the figure of merit suggested by 
Luzzati, Tardieu & Taupin (1972), i.e. q = lAp4), 
where Ap = p - P a v g "  When the F000 term is set to 0.0 
for calculation of the potential map, P a v g  = 0.0. The 
sampling of pixels in potential maps generated from the 
phase sets was well within the Nyquist limit (see 
Gaskill, 1978). Phases of the most intense reflections in 
this built-up lower-resolution set could then be 
annealed. A sequence of IEhl values was so treated, 
starting from highest to lowest magnitudes. For 
centrosymmetric phases, the consequence of adding r: 
to the generated value was evaluated by observing the 
flatness of the associated potential map; for non- 
centrosymmetric phases, the value a given by the 
Sayre equation was cycled, again through n (n'/2) 
(where n = 1, 2, 3, 4) for the same test. After derivation 
of a stable low-resolution set, it was then expanded via 
the Sayre equation as before for image-derived phases. 

In none of this work was the suitability of density 
modification considered for further phase refinement. 
While this may be a desirable goal, the sole object of 
this study was merely to evaluate the accuracy of direct 
methods themselves for predicting new phases. 

Fig. 2. Average structure of Omp F porin at 6 A, diffraction resolution 
when p31m symmetry is imposed. (Here, positive density is 
represented by white areas.) 

3. Results 

3.1. Expansions from a 10.~ basis 

A potential map, based just on image-derived phases 
at 10A resolution, is shown in Fig. 3(a). The ideal 
potential map at 6 A resolution, based on all 42 unique 
reflections, is shown in Fig. 4(a). Much of the structural 
information is contained in the phases of the 17 most 
intense reflections, as shown by Fig. 4(b) but, since 
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most of the diffracted intensity is found at the lower 
resolution, many details are also visible in Fig. 3(a). 

Starting with 17 unique phases to 10,~, resolution, the 
Sayre-Hughes expansion yielded a reasonably accurate 
prediction of new terms, as outlined in Table 1, which 
was in accord with the results found earlier for 
bacteriorhodopsin or halorhodopsin to the 6A limit 
(Dorset, Kopp, Fryer & Tivol, 1995). If, on the other 
hand, an incorrect p3 symmetry was assumed for the 
projection, the extension would not produce accurate 
phase estimates. Certainly, this serves as an illustration 
of the well known fact that choice of the correct 
symmetry plays a significant role in the accuracy of the 
structure determination, also at low resolution. The 
comparison of phase sets is given in Table 2. The 
resultant potential map also closely resembles the one 
calculated from the image phase set (Fig. 4c). The.map 
calculated, assuming random phases beyond 10A, is 
shown in Fig. 4(d). Thus, although many structural 
details are already present in the 10 A resolution map, 
they can be degraded somewhat by a poor phase 
extension - the random assignment being the worst 
case. 

3.2. Expansions from other basis sets 

The choice of a 10/k starting point was, of course, 
arbitrary. (Experimentally, this would be determined by 

(a) 

(b) 
Fig. 3. Potential maps for two starting basis set resolutions. (a) 10,~, 

(b) 12.5.~ 

Table 1. Mean phase errors (o)for Omp F porin 

Image phase extension Ab initio 
to 6 A phase determination 

p31m p3 p31m 

10A 12.5A 10A 10A 12.5A 
basis basis basis basis basis 

All dam 26 44 49 60 57 
New phases 43 57 82 

Table 2. Phases for Omp F porin by direct methods (o) 
(10 A basis) 

10 to Ab 10 to Ab 
hk0 Ideal 6 ,~ initio hkO Ideal 6 ,~ initio 

100" 180 180 180 320* 118 118 89 
200* 180 180 180 420* 305 305 306 
300* 180 180 180 520* 36 36 2 
400* 0 0 0 620 259 240 308 
500* 180 180 180 720 98 84 69 
600* 0 0 0 820 348 283 264 
700 0 180 180 920 173 194 188 
800 0 0 0 330* 261 261 179 
900 180 180 180 430* 159 159 138 
1~0,0 0 0 0 530 33 8 - 1 0  
110" 324 324 161 630 70 81 91 
210" 43 43 44 730 297 284 262 
310" 214 214 135 830 245 102 21 
410" 237 237 275 440 42 78 104 
510" 58 58 225 540 290 274 226 
610 104 128 235 640 195 74 327 
710 346 48 196 740 129 141 . 76 
810 184 113 84 840 272 335 31 
910 34 47 200 550 16 -91  177 
1~1,0 217 226 83 650 30 17 18 
220* 230 230 247 660 264 246 267 

* Reflections within 10A limit. 

the resolution of the electron micrograph.) Other 
resolutions were tested as possible basis sets, as if 
these were the (accurate) image transform limit of the 
respective electron micrographs. The mean phase 
accuracy for all 42 unique reflections improved as the 
resolution of the basis set was increased, as expected. 
On the other hand, the accuracy of just the newly 
defined phases did not conform similarly to the chosen 
starting basis resolution. As shown in Table 3, an  
optimal starting resolution of 11/k was found where the 
newly assigned reflections had the highest accuracy. A 
comparison of ideal and expanded phases is given in 
Table 4 for this resolution. On either side of this starting 
point, the mean phase error for newly assigned 
reflections was found to increase, so that there is an 
approximate parabolic dependence of this accuracy on 
basis resolution. A dramatic change is found when a 
slight decrease of resolution from 12 to 12.5]k is 
considered. [A potential map calculated just from image 
phases at the lower resolution is shown in Fig. 3(b).] 
This distinction amounts to the interaction of the intense 
330 reflection with the other starting phases. Such a 
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difference in derived phase accuracy, dependent on one 
added phase value, was found earlier when the Sayre 
equation was used to phase zonal data from a polymer 
(Dorset, Kopp, Fryer & Tivol, 1995). 

The success of the phase extension can also be 
evaluated with the resultant potential maps - comparing 
Sayre expansions to the results of adding random phases 
beyond the starting point (Fig. 5). Of course, since most 
map details are contained in the 17 accurately phased 
reflections with the highest intensity, the consequence of 
random phases on the quality of the image will be less 
severe as the starting resolution is increased. This is 
because more and more of the mean phase error will 
correspond to the weaker reflections. 

3.3. Ab initio phase determinations 

The possibility of carrying out ab initio phase 
determination was also evaluated. For these tests, 
starting resolutions were selected at 10 and 12.5A, 
respectively. As usual (Dorset, 1995), the initial 
solution was expanded in shells to the diffraction limit. 

If, for an ab initio phase determination at 10 A,, the 
values for 200, 300, 500 and 210 were chosen 
(considering both IEhl magnitude and index connectivity 
via the convolution operation to be desirable param- 

Table 3. Mean phase errors for  Sayre expansion from 
various starting resolutions 

(In~01) (o) 

No. of 
Basis initial All New 

resolution (/k) reflections data phases 

12.5 11 44 57 
12.0 12 29 41 
11.0 14 29 18 
10.0 17 26 43 
9.0 21 26 48 
8.0 27 23 58 

17 most 
intense 

reflections 

33 
17 
6 
3 
4 
0 

eters), then, for 16 unique phase sets, an identified 
'best'  solution was found for the respective starting 
phase values, rr, rr, rr, rr/4, corresponding to the flattest 
distribution of density (Fig. 6a). The Luzzati figure of 
merit q was calculated for this map (Table 5). Although 
it does not closely resemble the map calculated at 10 A 
from image-derived phases (Fig. 6g), phase annealing 
could be started with this initial set. A shift of the 400 
phase caused the map to become less fiat (Fig. 6b) so the 
change was rejected. A shift in the 220 phase also found 
no improvement in q (Fig. 6c). For the 320 reflection, 
the optimal value of q was found for a phase value of 
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( f )  
Fig. 4. Potential maps for Omp F porin at 6 lk diffraction resolution. (a) Phases from the Fourier transform of the image imposing symm.etry 

p3 lm; 'ideal' phase solution. (b) Ideal (image) phases of the 17 most intense reflections. (c) Image-derived 10 ik basis set expanded to 6 A by 
the Sayre equation. (d) 10A basis set; random phaseSoat higher resolution. (e) Phase expansion from ab initio basis set in Table 5 (Fig. 6f) .  
(f) Phase expansion of an ab initio basis set at 12.5 A that, however, cannot be identified a priori as an optimal solution. 
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Table 4. Phases for Omp F porin by direct methods (~) 
(11A basis) 

hk0 Ideal 11 to 6 ~, hk0 Ideal 11 to 6 

100" 180 180 320* 118 118 
200* 180 180 420* 305 305 
300* 180 180 520 36 - 8  
400* 0 0 620 259 252 
500* 180 180 720 98 108 
600 0 0 820 348 327 
700 0 0 920 173 149 
800 0 0 330* 261 261 
900 180 180 430 159 192 
10,0,0 0 0 530 33 24 
110" 324 324 630 70 71 
210" 43 43 730 297 286 
310" 214 214 830 245 99 
410" 237 237 440 42 88 
510" 58 58 540 290 250 
610 104 143 640 195 98 
710 346 302 740 129 120 
810 184 164 840 272 301 
910 34 36 550 16 22 
10,1,0 217 240 650 30 - 1  
220* 230 230 660 264 179 

* Basis reflections. 

93 ° (Fig. 6d). When the 420 reflection was annealed, 
two maps were found with nearly the same q value, the 
marginally lower value was accepted, corresponding to 
a phase of 302 ° (Fig. 6e). Although it has a large IEhl 
value, the 330 reflection was fairly insensitive to phase 
shifts, although a somewhat improved value of 
q = (Ap 4) was found for a phase value of Jr, which, 
unlike the previous choices, is incorrect. (The insensi- 
tivity of this reflection in the annealing step is somewhat 
puzzling, given its decisive role in producing a more 
accurate phase set via the Sayre equation as shown 
above. It is obvious that the interactive role of the 330 
reflection with other reflections is more important, 
therefore, than its own isolated value.) Based on these 
observations, a new low-resolution set was constructed 
to include revised values for the 320, 420 and 330 
reflections (Fig. 6f) and the resultant map could then be 
compared to the one calculated from ideal image phases 
(Fig. 6g). The annealed phases were then extended to 
6 A resolution by the Sayre-Hughes equation. Although 
the phase accuracy (Table 1) was not so great as when 
the image-derived phases at the same resolution were 
extended, the resultant map still contains features of 
the one derived from images to the highest resolution 
(Fig. 4e). Moreover, the predominance of the fl-barrel 
structure in the trimer can still be ascertained from the 
final map. A list of phases can be compared to the 
one found by expansion of image-derived phases 
(Table 2). 

An attempt was then made to improve the 10 ,~, set by 
clustering the changes to the phases for the three 
reflections identified, by a minimization of q, as has 
been described earlier for halorhodopsin (Dorset, 

Table 5. Annealing of lOf'l starting phase set 

Initial value: q = 0.138. 

Initial 
hk0 IFi IEI phase (°) 

100 7.8 0.12 180 
200* 74.4 1.13 180 
300* 107.8 1.64 180 
400 107.6 1.02 0 
500* 229.5 2.18 180 
600 11.9 0.11 0 
110 33.9 0.54 156 
210" 57.8 0.88 44 
310 28.4 0.27 135 
410 56.9 0.54 276 
510 45.8 0.44 225 
220 93.7 0.89 248 

320 98.9 0.94 3 

420 74.2 0.71 212 

330 149.3 1.42 90 

Change (q) Decision 

180 (0.142) Reject 

338 (0.142) Reject 
68 (0.140) Reject 

158 (0.138) Reject 
93 (0.126) Accept 

183 (0.171) Reject 
273 (0.133) Reject 
302 (0.121) Accept 

32 (0.122) Reject (?) 
122 (0.142) Reject 
180 (0.132) Accept 
270 (0.143) Reject 

0 (0.160) Reject 

* Generating reflections. 

1995). The initial change, starting with the 320 
reflection, is nearly correct - in fact, this phase seems 
to be the most decisive for changing the appearance of 
the projected potential distribution in Fig. 6. When the 
additional change to ~o420 was considered next, the best 
value for q (0.112) was found when the phase was 32 °, 
not the more correct value, 302 °, identified earlier. 
Obviously, a more accurate structure was not found by 
this path. Therefore, false minima can appear in such 
searches. Finally, in, evaluating criteria similar to those 
used to prepare Fourier maps to be improved by density 
modification (Leslie, 1987), negative regions were 
arbitrarily set to zero and the figure of merit was 
applied only to the positive pixels. This attempt also led 
to a poorer selection of phase values. 

The lowering of the initial resolution to 12.5 ,~ had a 
negative influence on the ab initio determination. In one 
trial, the 300, 400, 500 and 320 reflections were used to 
generate 16 unique solutions by phase permutation. Of 
these, a test for flatness only permitted rejection of 8 of 
the possible solutions. Even though the correct solution 
could not be chosen from this group, it could be 
narrowed to two choices if the (chemical) knowledge of 
fl-sheet secondary structure was used to interpret the 
map - i . e .  all maps containing large 'blobs' of density 
were rejected. Arbitrary selection of the actual starting 
phase set to expand to the 12.5 ,~, limit by the Sayre- 
Hughes equation resulted in a mean phase error of only 
40 °. Further extension to 6 A (again via two cycles of 
the convolution) produced phases with an overall 
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accuracy of 57 °, yielding a potential map where features 
of the /%barrel could be ififerred (Fig. 4f) but with 
significant distortion of this structure. When the 
alternative list of symbolic 'generator '  reflections 
considered in the previous section were used instead 

to expand to all reflections within 12.5~,, similar 
difficulties were experienced, since the flatness criterion 
q, again, did not single out the best starting phase set. It 
cannot be claimed, therefore, that this lower-resolution 
start leads to a satisfactory outcome. 

~_." . : ~ . a ~  . . , ~  :~.;.-.,..-.q:-.' , ~ " ~  ::. 
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Fig. 5. Potential maps at 6 A resolution generated by the Sayre equation from basis sets at 
various resolutions (see also Fig. 3). 12.5 A: (a) Sayre expansion; (b) random phases beyond 
basis set. 12.0/k: (c) Sayre expansion; (d) random pha~s beyond basis set. l l .0A: (e) Sayre 
expansion; (f) random phases beyond basis set. 9.0A: (g) Sayre expansion; (h) random 
phases beyond basis set. 8.0 A: (t) Sayre expansion; (j) random phases beyond basis set. 
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4 .  D i s c u s s i o n  

The idea of using direct phasing techniques to predict 
the values of unknown terms in protein structure 
analyses has now been applied for three separate 
macromolecular zonal data sets, including two  exam- 
ples with predominately a-helical  geometry and one 
with extensive fl-sheet substructure. While the resultant 
phase accuracy may not be as good as the best analysis 
of electron micrographs obtained to high resolution 
[with all due care that all possible perturbations 
mentioned above are minimized - see Henderson et 
al. (1986)], it is still good enough to determine many of 
the characteristic structural details within the molecular 
envelope. However, the accuracy of the phase extension 
seems to be related also to an optimal basis resolution. 
There does not seem to be a prel iminary requirement 

for any particular structural motif, including a putative 
'pseudo-atomicity' of a helix projection, for such phase 
extensions by the Sayre convolution to be successful. 
Furthermore, the reciprocal-space domain out to e.g.  
6tk resolution is particularly useful for such phase 
extensions. Somewhat beyond this resolution, a 'nodal 
point'  is encountered, where reversals in the overall 
phase envelope occur (Dorset, Kopp, Fryer  & Tivol, 
1995). Fan, Hao & Woolfson (1991) have discussed 
how low-angle data from proteins should be particularly 
useful for phase determination because the intensities in 
this region are the most prominent part of the diffraction 
pattern. While, unfortunately, the lowest-resolution 
intensities are often not measured in X-ray crystal- 
lography, they are a prominent feature of an electron 
crystallographic data set and also represent the region 
where phases are most conveniently obtained from 

~:;i.: ,-..: : ~ ~ " .  ~.-i~ "" "~ ". ; ~:i:-'. " : " " - " ' ~  

~ . i ~ A ~ i ~ i i . . 7 ~ i "  : "  : ,  "1" "'= " ' !  " "~-~:" < ~(.--]~5..i!i:~!<ii i~7~1-77 

(a) 

~! :'r:'<" • "."{!.~. ' ~'; .]~-: 7=:7 3(':'D 

(b) 

'.~.~.~,~,. --" ......... --',..o~ ," '.~,:,'~I~..~..- 

(d) (e) 

(c) 

~.!-.:.,,.~ , ~ ~ i.~.,.~.. ~ 

( f )  

Fig.6. Trial phase sets at 10A by ab initio direct methods. (a) Initial phase set expanded from 
zr, Jr, zr, zr/4 as the generating reflections (see Table 5). (b) Annealing step, ~0400 = 180 °. No 
change in the phase value is made. (c) When the value O f ~z2o is changed (e.g. to 338°), q is 
not significently reduced. (d) When ¢32o is changed, the lowest value of q is found at 93 °. 
(e) When ~o42 o is changed, the lowest q value occurs at 302 ° but one nearly as low is found for 
32 °. (f) When the three phase changes that individually lower q are combined, the map can be 
compared to the ideal case based on image-derived phases (g). 
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electron micrographs. The potential advantage of 
electron crystallography over X-ray crystallography is 
therefore clear, since the amplitudes and phases of the 
most intense reflections are most easily found by 
electron diffraction and image analysis. 

The results of two ab initio phase determinations for 
projected protein structures (e.g. halorhodopsin and 
now the bacterial porin) show some promise, even 
though the results are not as useful as those from the 
phase extension. In these analyses, the need for a 
suitable figure of merit (FOM) that is different from the 
ones commonly used in crystallography is hardly 
surprising, since there is no reason to expect that the 
Cochran (1952) condition, important for atomic resolu- 
tion structure analyses, should have any particular 
relevance to the application of direct methods to 
macromolecules (or anything else) in this low-resolution 
domain. Indeed, it is more reasonable to expect that the 
exact opposite of 'peakiness', i.e. density flatness or 
smoothness, should be the deciding factor in seeking a 
correct solution. While multisolution techniques also 
appear to be useful for phase determination, particularly 
when they are coupled with the Sayre equation, there 
are, obviously, implied caveats for their use. For 
example, there is a requirement that an initial phase set 
be built up to a sufficient resolution limit so that a test of 
density flatness will be decisive for choosing a useful 
starting point for annealing and then expansion. When 
the permuted generator reflections are expanded by the 
convolution to fill the limits of the defined low- 
resolution basis reflections, the starting phases must, 
therefore, produce a significant approximation to the 
molecular envelope. Seeking an absolute minimum of 
the density flatness criterion, q, in such analyses, 
however, can be dangerous. As a relative indicator for 
finding possible phase solutions, it seems to be useful, 
just as it is for finding likely phases that should be 
changed on annealing. (However, annealing reflections 
with weak amplitudes also is not useful.) False minima 
of q occur, therefore, and also shallow ones, as 
experienced before when this figure of merit was used 
to direct the phase refinement of phospholipid bilayers 
(Dorset, 1991). Thus, while this concept seems to 
provide a useful starting point, there may be other 
FOM's that will prove to be more useful for identifica- 
tion of correct phase changes. For example, one 
proposed recently by Mishnev & Woolfson (1994) 
could be tested in this context. 

Despite these difficulties, the results of this work 
compare quite favorably to earlier refinement of multi- 
ple isomorphous replacement (MIR) X-ray phases for 
macromolecules at similar resolution by direct methods. 
For example, Reeke & Lipscomb (1969) reported mean 
phase errors in the range 37 to 79 ° for carboxypeptidase 
at 6 A, for data refined by the tangent formula. A low- 
resolution expansion of t-RNA MIR phases by matricial 
direct methods resulted in an average error of 73 ° , or 

44 ° for the 36% of the reflections with the best figure of 
merit (Podjarny, Schevitz & Sigler, 1981). In the 
electron crystallographic approach, it is, obviously, 
always advantageous to start with as much phase 
information as possible. If just the 17 most intense 
reflections for the Omp F porin are monitored, it can be 
shown that the mean phase error is only 17 ° when 12 
image phases are extended by 34 ° when 12.5]k image 
phases are used and 42 ° when the ab initio approach is 
taken. 

From such work, the challenges to ab initio phase 
determinations in protein crystallography are made 
somewhat more clear than before. It is reasonable, first 
of all, to consider just the low-angle region as being 
reasonably accessible to phase analysis. Nevertheless, 
even though multiple-solution techniques via phase 
convolutions might provide a reasonable start for an 
ab initio analysis, is it possible to find better figures of 
merit for identifying the best solution and also 
improving the initial estimate? Similar success at 
structure determination has recently been realized 
when atomic resolution data were being analyzed by 
direct methods (Weeks et al., 1995), using, of course, 
quite different criteria for identifying the correct phase 
solution. (There, the current resolution limit seems to 
be somewhere around 1.2 ,~.) As pointed out previously 
(Podjarny & Yonath, 1977), the greatest challenge to 
phase determination in macromolecular crystallography 
currently seems to be the intermediate resolution 
region near 5A, where rather simple assumptions, 
useful for the other extremes of resolution, will then 
break down, so that one is faced with defining a 
criterion for structure identification somewhere between 
flatness and peakiness. 

5. Conclusions 

(i) Given a sufficiently accurate lower-resolution 
phase set from a protein, e.g. from the Fourier 
transform of an electron micrograph, it is possible to 
extend to higher resolution by rather simple convolu- 
tional techniques, such as the Sayre equation. The 
success of such an expansion does not seem to depend 
upon a specific secondary structure for the protein since 
similar success is observed from quite dissimilar 
examples with, respectively, high amounts of u-helix 
or t-sheet. 

(ii) Surprisingly, phase extensions from a starting 
basis set are found to have an optimal resolution at low 
angle for assigning accurate values to higher-resolution 
reflections. On either side of this optimal basis 
resolution, the mean phase error increases. 

(iii) Ab initio phase determinations are, in principle, 
possible for noncentrosymmetric projections, just as 
they are for centrosymmetric projections. However, 
even though the criteria of density flatness or smooth- 
ness are reasonably used as figures of merit below 6 ~,, 
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it is clear that more robust FOM's  than the (Ap 4) value, 
tested in this and a previous study (Dorset, 1995), must 
be found. 

Research was funded by a grant from the National 
Institute of  General Medical Sciences (GM46733). Dr 
H. J. Sass is thanked for providing the data set used for 
this analysis. 
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